top of page

特任助教の伏見さんが異動しました


2020年12月をもって、特任助教の伏見さんが退職し、新天地に異動されました。次もプロジェクトの枠組みでの雇用ですが、さらに成果を上げることで、活躍されることを願っています。彼は、僕が異動した2014年4月からラボに参画し、7年弱の間、精力的に働いてくれて、とても感謝しています。最初は若手Aでの研究員として、2017年からはCRESTでの特任助教として働いてくれました。彼はもともと天然物化学を専門とし、分子生物学や生化学に関しては、実習などで行ったことがある程度という状況でのラボへの参画でしたので、当初は分子生物学、生化学、光生物学の基本的な技術を習得することから始まりました。しかし、技術の習得後は、着々と実験を積み上げてくれて、この7年弱の間に、筆頭著者原著論文7報、共同筆頭著者原著論文1報、共著原著論文7報、筆頭著者英文総説1報が出版済み、筆頭著者原著論文1報投稿中、共同筆頭著者原著論文1報リバイス中となっています。一昨年、昨年と連続でPNAS誌に筆頭著者論文を掲載することもできました。生命科学系の分野において、7年弱でこれだけアウトプットできるのは、稀有なことだと思っています。雇用前には、全く接点がなく知らない方だったものの、仲の良い先生がとても良い方だと推薦してくれての雇用という経緯でしたが、本当に良い方と一緒に働くことができたと思っています。以下に、伏見さんが成川研在籍時に出した原著論文をお示ししておきます(2022年3月に追記)。


原著論文(#: equally contribution, *: corresponding author)

1: Makita Y#, Suzuki S#, Fushimi K#, Shimada S#, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M*. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat. Commun. 2021 Jun 16;12(1):3593.

2: Tachibana SR, Tang L, Zhu L, Takeda Y, Fushimi K, Ueda Y, Nakajima T, Kuwasaki Y, Sato M, Narikawa R, Fang C*. An engineered biliverdin-compatible cyanobacteriochrome enables a unique ultrafast reversible photoswitching pathway. Int. J. Mol. Sci. 2021 May 16;22(10):5252.

3: Fushimi K*, Narikawa R*. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Biochem. J. 2021 Mar 12;478(5):1043-1059.

4: Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C*. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 Apr 5;250:119379.

5: Fushimi K#, Hoshino H#, Shinozaki-Narikawa N, Kuwasaki Y, Miyake K, Nakajima T, Sato M, Kano F, Narikawa R*. The cruciality of single amino acid replacement for the spectral tuning of biliverdin-binding cyanobacteriochromes. Int. J. Mol. Sci. 2020 Aug 30;21(17):6278.

6: Fushimi K, Matsunaga T, Narikawa R*. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Photochem. Photobiol. Sci. 2020 Oct 14;19(10):1289-1299.

7: Fushimi K*, Hasegawa M, Ito T, Rockwell NC, Enomoto G, Ni-Ni-Win, Lagarias JC, Ikeuchi M, Narikawa R*. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc. Natl. Acad. Sci. U.S.A. 2020 Jul 7;117(27):15573-15580.

8: Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R*. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J. 2020 Sep;287(18):4016-4031.

9: Kuwasaki Y, Miyake K, Fushimi K, Takeda Y, Ueda Y, Nakajima T, Ikeuchi M, Sato M, Narikawa R*. Protein engineering of dual-Cys cyanobacteriochrome AM1_1186g2 for biliverdin incorporation and far-red/blue reversible photoconversion. Int. J. Mol. Sci. 2019 Jun 15;20(12):2935.

10: Fushimi K, Miyazaki T, Kuwasaki Y, Nakajima T, Yamamoto T, Suzuki K, Ueda Y, Miyake K, Takeda Y, Choi JH, Kawagishi H, Park EY, Ikeuchi M, Sato M, Narikawa R*. Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proc. Natl. Acad. Sci. U.S.A. 2019 Apr 23;116(17):8301-8309.

11: Hasegawa M, Fushimi K Miyake K, Nakajima T, Oikawa Y, Enomoto G, Sato M, Ikeuchi M, Narikawa R*. Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. J. Biol. Chem. 2018 Feb 2;293(5):1713-1727.

12: Fushimi K, Ikeuchi M, Narikawa R. The expanded red/green cyanobacteriochrome lineage: An evolutionary hot spot. Photochem. Photobiol. 2017 May;93(3):903-906.

13: Fushimi K, Enomoto G, Ikeuchi M, Narikawa R*. Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochem. Photobiol. 2017 May;93(3):681-691.

14: Fushimi K, Rockwell NC, Enomoto G, Ni-Ni-Win, Martin SS, Gan F, Bryant DA, Ikeuchi M, Lagarias JC, Narikawa R*. Cyanobacteriochrome photoreceptors lacking the canonical Cys residue. Biochemistry 2016 Dec 20;55(50):6981-6995.

15: Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, Sato M, Narikawa R*. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. Front. Microbiol. 2016 Apr 26;7:588.

16: Narikawa R*, Fushimi K, Ni-Ni-Win, Ikeuchi M. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Biochem. Biophys. Res. Commun. 2015 May 29;461(2):390-5.

17: Narikawa R*, Nakajima T, Aono Y, Fushimi K, Enomoto G, Ni-Ni-Win, Itoh S, Sato M, Ikeuchi M. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Sci. Rep. 2015 Jan 22;5:7950.

18: Narikawa R*, Enomoto G, Ni-Ni-Win, Fushimi K, Ikeuchi M. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Biochemistry 2014 Aug 12;53(31):5051-9.


総説

1: Fushimi K, Narikawa R*. Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. Adv. Exp. Med. Biol. 2021;1293:167-187.

2: Fushimi K, Narikawa R*. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr. Opin. Struct. Biol. 2019 Aug;57:39-46.





タグ:

Featured Posts
Recent Posts
Search By Tags
Follow Us
  • Facebook Black Square
  • Twitter Black Square
  • Google+ Black Square
bottom of page